示意图 待补充。。。
结构定义 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 #define MAXVEX 100 #define INFINITY 65535 typedef char VertexType; typedef int EdgeType; typedef struct { VertexType vex[MAXVEX]; EdgeType edge[MAXVEX][MAXVEX]; int numVex, numEdge; } AMGraph; bool visited[MAXVEX];
源码 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 #include <stdio.h> #include <stdbool.h> #define MAXVEX 100 #define INFINITY 65535 typedef char VertexType; typedef int EdgeType; typedef struct { VertexType vex[MAXVEX]; EdgeType edge[MAXVEX][MAXVEX]; int numVex, numEdge; } AMGraph; bool visited[MAXVEX]; void CreateAMGraph (AMGraph *G) ;void DFS_Traverse (AMGraph * G) ;void MiniSpanTree_Prim (AMGraph *G) ;int main (void ) { AMGraph G; CreateAMGraph(&G); printf ("深度优先遍历:" ); DFS_Traverse(&G); printf ("\n" ); printf ("最小生成树:\n" ); MiniSpanTree_Prim(&G); return 0 ; } void CreateAMGraph (AMGraph *G) { G->numVex =9 ; G->numEdge = 15 ; G->vex[0 ]='A' ; G->vex[1 ]='B' ; G->vex[2 ]='C' ; G->vex[3 ]='D' ; G->vex[4 ]='E' ; G->vex[5 ]='F' ; G->vex[6 ]='G' ; G->vex[7 ]='H' ; G->vex[8 ]='I' ; int i, j; for ( i = 0 ; i < G->numVex; i++ ) { for ( j = 0 ; j < G->numVex; j++ ) { G->edge[i][j] = INFINITY; } } G->edge[0 ][1 ]=10 ; G->edge[0 ][5 ]=11 ; G->edge[1 ][2 ]=18 ; G->edge[1 ][6 ]=16 ; G->edge[1 ][8 ]=12 ; G->edge[2 ][3 ]=22 ; G->edge[2 ][8 ]=8 ; G->edge[3 ][4 ]=20 ; G->edge[3 ][7 ]=24 ; G->edge[3 ][6 ]=16 ; G->edge[3 ][8 ]=21 ; G->edge[4 ][5 ]=26 ; G->edge[4 ][7 ]=7 ; G->edge[5 ][6 ]=17 ; G->edge[6 ][7 ]=9 ; for ( i = 0 ; i < G->numVex; i++ ) { for ( j = i; j < G->numVex; j++ ) { G->edge[j][i] = G->edge[i][j]; } } } void DFS (AMGraph *G, int i) { printf ("%c " , G->vex[i]); visited[i] = true ; for ( int j = 0 ; j < G->numVex; j++ ) { if ( !visited[i] && G->edge[i][j] != INFINITY ) DFS(G, j); } } void DFS_Traverse (AMGraph * G) { for ( int i = 0 ; i < G->numVex; i++ ) { visited[i] = false ; } for ( int i = 0 ; i < G->numVex; i++ ) { if ( !visited[i] ) { DFS(G, i); } } } void MiniSpanTree_Prim (AMGraph *G) { EdgeType lowcost[MAXVEX]; int adjvex[MAXVEX]; lowcost[0 ] = 0 ; adjvex[0 ] = 0 ; for ( int i = 1 ; i < G->numVex; i++ ) { lowcost[i] = G->edge[0 ][i]; adjvex[i] = 0 ; } for ( int i = 1 ; i < G->numVex; i++ ) { int min = INFINITY; int k; for ( int j = 1 ; j < G->numVex; j++ ) { if ( lowcost[j] != 0 && lowcost[j] < min ) { min = lowcost[j]; k = j; } } lowcost[k] = 0 ; printf ("(%c, %c)\n" , G->vex[adjvex[k]], G->vex[k]); for ( int j = 1 ; j < G->numVex; j++ ) { if ( lowcost[j] != 0 && G->edge[k][j] < lowcost[j] ) { lowcost[j] = G->edge[k][j]; adjvex[j] = k; } } } }
文章导航
← 「图-最短路径(Dijkstra算法)」C语言实现
C++实战项目推荐 →
载入天数... 载入时分秒...
🤵访问人数: 人
|
👀访问量: 次